Fakultät für Physik
print

Sprachumschaltung

Navigationspfad


Inhaltsbereich

EM1: Advanced Solid State Physics – Overview

The EM1 team

Lecture:  

        Prof. Dr. Roland Kersting                
           LS für Photonik und Optoelektronik
           Amalienstr. 54

Exercises:

        Andreas Reichel (Andreas.J.Reichel@campus.lmu.de)
           plus about four teaching assistants           

Class hours

Lecture:                   

    Mon. 12:15 - 13:45, room N020 and Thu. 12:15 - 13:45, room H030, Kersting

Office hours:           

    Mon. 16:30 - 18:00, Amalienstr. 54, room 309, Kersting

Exercises, revision course:

    Thu. 14:15 - 15:45, room H030, Kersting, Reichel

Exercises, small groups:

  1. Mon. 10:15 - 11:45, room H030, Andreas Reichel
  2. Mon. 14:15 - 15:45, room H206, Ilka Kriegel / Paul Kühler
  3. Mon. 14:15 - 15:45, room H537, Matthias Strauch
  4. Thu. 16:15 - 17:45, room N020, Lidiya Osinkina
                                     

Short description

Advanced Solid State Physics is a 9 ECTS course. The course covers the physics of solid state phenomena on graduate level. Topics are:

  • Structure
  • Elasticity
  • Phonons
  • Bonding
  • Electrons in X-tals
  • Metals
  • Electronic transport
  • Semiconductors
  • Dielectric properties
  • Magnetic systems (?)
  • Superconductors

Every section will start with reviewing the most fundamental concepts taught in undergraduate solid state physics. The main purpose of the course EM1 is to broaden the understanding of solid state phenomena. Additionally, modern research fields in experimental physics will be visited.

 

Exercises

  • We will have weekly homework assignments.
  • A collection of exercises can be found on the couse's web site.
  • Students are encouraged to present the exercises during class.

 

Textbooks

Experimental Physics:

  1. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Harcourt, 1976).
  2. S. Hunklinger, Festkörperphysik (Oldenbourg, 2007).
  3. C. Kittel, Introduction to Solid State Physics (Oldenbourg, 2006).
  4. P. Hofmann, Solid State Physics, an Introduction (Wiley-VCH, 2008).
  5. H. Ibach, H. Lüth, Festkörperphysik (Springer, 2000).
  6. M. P. Marder, Condensed Matter Physics (John Wiley & Sons, Inc. 2000).

Theory:

  1. N. Ashcroft, N. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1987).
  2. J. Solyom, Fundamental of the Physics of Solids, vol. 1 (Springer, 2007).
  3. J. Solyom,  Fundamental of the Physics of Solids, vol. 2 (Springer, 2007).
  4. J. Ziman, Theory of Solids (Cambridge University Press, 1998).
  5. D. Pines, Elementary excitations in solids (Perseus Book, 1999).

Special Topics:

  1. C. F. Klingshirn, Semiconductor Optics (Springer, 2007).
  2. M. Schwoerer, H. C. Wolf, Organische Moleküle und Festkörper (Wiley-VCH, 2005).
  3. H. Lüth, Surfaces and Interfaces of Solid Materials (Springer-Verlag, 1996).

Problems and Solutions:

  1. L. Mihaly and M. C. Martin, Solid State Physics, Problems and Solutions, John Wiley & Sons, Inc. (1996)
  2. M. C. Lux-Steiner and H. H. Hohl, Aufgabensammlung zur Festkörperphysik, Springer-Verlag (1994)
  3. H. Schilling, Festkörperphysik, VEB Fachbuchverlag Leipzig (1976)
  4. H. J. Goldsmith, ed., Problems in Solid State Physics, PION Limited, London, (1968?)

Concerning lecture notes:

The lecture notes aren't original work. Many building blocks and figures are taken from the textbooks recommended above.

 

Handouts and other material

You will find all relevant information and material on the webpage:

http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_11_12/EM1/handouts