Fakultät für Physik
print

Sprachumschaltung

Navigationspfad


Inhaltsbereich

R: Rechenmethoden der Theoretischen Physik (WS 2017/2018) – Skript

Vorlesung Zugriffschutz: Userid: ihre eigene Campus-Kennung. Passwort: ihr eigenes Passwort.

Hinweise zur Benutzung des Skripts (und Tipps zum Öffnen der pdf-Dateien) finden Sie hier.

Das handschriftliche Skript wird ergänzt durch ein (fast fertiges) Buch in englischer Sprache, mit dem Titel "Mathematics for Physicists: Introductory Concepts and Methods", verfasst von Alexander Altland und Jan von Delft ("Altland-Delft-Buch"). (Aktuelle Version: hier.) Alle in der untenstehenden Tabelle ausgewiesenen Abschnitte dieses Buches sind klausurrelevant. (Hinweise zur Benutzung des Buches finden Sie hier.)

Videoaufzeichnungen aller Vorlesungen finden Sie hier. (Funktionsstörungen des Videoservers sind bitte nicht bei mir, sondern direkt bei itunes@lmu.de zu melden.)

Stoffplan

Nr. Datum Lücke End Kor Pingo Skript Buch Thema
06 02.11.17
14:15
statt
Zentral-
Übung
V1a-V1n
ZV1
V1 [V = Vektoranalysis] Raumkurven: vektorwertige Funktionen, Geschwindigkeit, Beschleunigung, Bogenlänge, natürliche Parametrisierung. Linienintegral: Definition, Beispiel [Arbeit entlang eines Weges r(t)].
01.11.17

Allerheiligen. Ersatztermin: statt Zentralübung, Do, 01.11.17, 14-16.
05 30.10.17
L4a-L4m
ZL4
L4 Vektorprodukt: Levi-Civita-Symbol, Kontraktions-Identität, allgemeine Eigenschaften des Vektorprodukts, Grassmann-Identität, Spatprodukt.
04 25.10.17 L3.1a-g
L3.2a-f
L3.3a-c
ZL3a-b
L3 Euklidischer Raum: Skalarprodukt; Norm, Winkel zwischen Vektoren, Orthogonalität, Orthonormalität, Gram-Schmidt-Verfahren; reelles Inneres Produkt, Metrik; komplexes inneres Produkt
03 23.10.17 L2.1a-c, L2.2a
L2.3a-b, L2.4a-f
L2.5a-j, L2.6a-c
ZL2a-c
L2 Vektorraum: geometrische Anschauung, R^n, formale Definition, Beipiele: Pfeile, R^n, Funktionenraum; Span, lineare Unabhängigkeit, Vollständigkeit, Basis, Dimension, Einsteinsche Summenkonvention, Standardbasis in Rn, Isomorphismus zwischen n-dimensionalem V und R^n
ZÜ01 19.10.17 Zentralübung zu Blatt 01, im Großen Physikhörsaal. (Blatt 01 finden Sie unter dem Reiter Übungen.)
02 18.10.17 C1a-f
C2a-f
ZC1-2
C1
C2
[C = Calculus = Diff. & Int.-Rechung] Differenzieren: geometrische Interpretation, formale Definition, Rechenregeln, Beispiele
Integrieren: geometrische Interpretation, formale Definition, Hauptsatz der Diff. und Integralrechnung Rechenregeln, partielle Integration, Substitution
01 16.10.17
L1a-l
ZL1
L1 [L = Lineare Algebra] Mathematische Grundbegriffe: Menge, Abbildung, Gruppe, Körper, komplexe Zahlen
01 16.10.17
pdf Eugene Wigner (lesenswerter Aufsatz): The Unreasonable Effectiveness of Mathematics in the Natural Sciences
00 Selbststudium Sehr empfehlenswert zur Auffrischung ihres Schulwissens: das schöne Skript zu einem mathematischen Vorkurs von Andreas Schadschneider, Uni-Köln. Die Folien, die ich selbst zu diesem Thema beim Mathematischen Vorkurs (Vorlesungen 3 und 4) an der LMU (30.09-08.10.2013) geschrieben habe, finden Sie hier, und die entsprechenden Videos hier.