Fakultät für Physik




Excitons in semiconducting 2D materials

Dr. Alexey Chernikov (Institut für Experimentelle und Angewandte Physik, Universität Regensburg)

Datum:  20.06.2016 17:15 Uhr – 18:30 Uhr

Ort: Hörsaal 2, Physik-Department der TUM, Garching

Since the discovery of graphene, a single sheet of carbon atoms, research focused on twodimensional (2D) materials evolved rapidly due the availability of atomically thin, thermally stable crystals with intriguing physical properties. The 2D materials naturally inherit major traits associated with systems of reduced dimensionality: strongly enhanced Coulomb interactions, efficient light-matter coupling, and sensitivity to the environment. In particular, the considerable strength of the Coulomb forces between the charge carriers introduces a rich variety of many-body phenomena. In the class of 2D semiconductors this leads to the emergence of atom-like electron-hole quasi-particles, such as excitons, trions, and biexcitons, with unusually high binding energies and efficient light absorption.

In this talk, I will focus on the optical properties of 2D semiconductors, largely determined by strong excitonic resonances, as exemplified in recent works on atomically thin transition metal dichalcogenides. The observation of exciton binding energies on the order of many 100’s of meV and the marked deviation of the electron-hole attraction from the conventional Coulomb law will be discussed. The results reflect both strong carrier confinement and the distinctive nature of dielectric screening in atomically thin materials.

Student event: Meet the speaker
We invite you to a student-only discussion-round with Dr. Alexey Chernikov before his Munich Physics Colloquium talk.
Be curious and feel free to ask any question.
Monday, 20 June 2016, 16:00 h
Seminar room PH 3076 (upper floor), Physik-Department der TUM, Garching