Entropielastizität im idealen Gummi

Gummi besteht aus Polymeren, die sich in vielfältigen Konformationen anordnen. Ohne Kraft wird die Zustandszahl S maximiert. Beim Dehnen wird die Entropie ln S erwartungsgemäß erniedrigt.

Unter Zug (\(T \rightarrow T + \frac{F}{S} \))

\[\Delta U = \frac{T \Delta S}{Q} + F \Delta L \]

Für den idealen Gummi gilt: \(+ \) wegen Richtung von \(F \) (\(\Delta u \rightarrow \Delta s \))

Für isotherme Expansion gilt: \(\Delta U = 0 \) (ideal, Poynting)

\(\Rightarrow F = -T \frac{\Delta S}{\Delta T} \)

Experiment: Gummi unter Last

\(\Rightarrow F \) wächst mit \(T \)

\(\Rightarrow \) Gummi verknot sich.

Bei adiabatischer Dehnung [Vorwärzung]

\(\Delta U = mc_v \Delta T - T \Delta S + F \Delta L \)

(\(\Delta u \rightarrow \Delta s \))

(\(\Delta s \rightarrow \Delta u \))

\(\Rightarrow \Delta T = \frac{F}{mc_v} \Delta L \) (siehe Adiabate bei Carnot)