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1. Lecture on Oct. 16. – Conformal Diffeomorphisms

• References: I do not follow specific books, possible references include [F, R,
G, S].
• For most of these lectures we will consider subsets of Rn with meteric g (mostly
g is the Euclidean metric). Definition [S]: A conformal diffeomorphism
φ : U ⊂ Rn → V ⊂ Rn is a diffeomorphism s.t.

(1) (φ∗g)p(X, Y ) = Ω2gp(X, Y )

for some function Ω : U → R+ .
• The conformal Killing equation is the infintesimal version of definition (1).

Using coordinates {xµ} this reads

xµ 7→ xµ + εfµ(x) , with fµ;ν + fν;µ =
2

n
fα;αgµν +O(ε2)

• Example: Isometries of Rn are conformal diffeos with Ω ≡ 1.
• For n 6= 2

fµ(x) = λxµ and fµ(x) = 2(c · x)xµ − (x · x)cµ

where λ ∈ R+ and cµ is a constant vector. Thus the conformal algebra is of
dimension n

2
(n+ 1)(n+ 2).
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2. Lecture on Oct., 18. – Conformal Diffeo’s cont’d [R]

• For the Euclidean metric (gµν = δµν) the condition (1), expressed in coordinates,

(φ∗g)µν = δαβ
∂φα

∂xµ
∂φβ

∂xν
= Ω2δµν

makes it explicit that a confomal diffeomorphism is locally equivalent to a
rotation followed by a rescaling.
• On can show (problem sheet 1) that the algebra of infinitesimal conformal

diffeos is isomorphic to the algebra of isometries, so(n+1, 1) of n+2 dimensional
Minkowski space Rn+1,1.
• Similarly, for gµν = ηµν with signature (1, n − 1) the algebra of infinitesimal

conformal diffeos is isomorphic to the algebra of isometries, so(n, 2) of n + 1
dimensional Anti deSitter space AdSn+1. defined by the hypersurface,

XAXBηAB = −1

where, ηAB = (+,+,+,+,+. · · · ,+,−,−).
• For n = 2, identifying R2 ' C with coordinate z = x1 + ix2, condition (1)

implies the Cauchy-Riemann equations for u = Re(φ) and v = Im(φ). Thus,
z 7→ f(z) with f(z) holomorphic in U ⊂ C is a conformal diffeo. Similarly, on
R2 with Minkowski metric, any functions x+ 7→ f(x+) and x− 7→ g(x−) define
conformal diffeos.
• In order to discuss the global properties of these transformations we consider the

conformal compactification, adding the point at infity, C ∪ {∞}. Globally
defined conformal mappings are then of the form

f(z) =
P (z)

Q(z)

where P and Q have at most simple zeros. This defines the group SL(2,C)
generated by complex linear combinations of

l1 = −∂z. l0 = −z∂z and l−1 = −z2∂z

with algebra [lm, ln] = (m− n)lm+n.

3. Lecture on Oct. 23. – Conformal Transformations and Critical
Phenomena

• The group SL(2,C) is (perhaps) also familiar from the discussion of the Lorentz
group in 3 + 1 dimensions where is the group that is generated by the complex
generators,

Ta = Ka ± iJa
where Ka and Ja are the generators of Lorentz boosts and rotations respec-
tively. This the shows that the group SL(2,C) of globally defined conformal
transformations in 2 Euclidean dimensions is indeed isomorphic to SO(3, 1) as
we expect from our discussion in lecture 2 for generic dimensions.
• Conformal transformations are defined as the composition of a conformal

diffeomorphism (1) and a Weyl transformation of the metric g given by

Rn 3 p 7→ p

g 7→ Ω̃2g
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and Ω̃ is chosen such that g is invariant under the composition. More precisely
Ψ = Weyl ◦ conf diff, such that

Ψ : p 7→ φ(p)

g 7→ 1

Ω2
(φ∗g) = g

• Crtitical phenomena [Go, Sa] such as second order phase transformations are
characterised by a few critical exponents. For instance, for a ferro magnetic
substance we have near the critical (Curie) temperature

magnetisation : < Mz >∝ |T − Tc|β

susceptibility : χ =
∂ < Mz >

∂Bz

|B=0 ∝ |T − Tc|−γ

where B is the external magnetic field and β ' 0.33 and γ ' 1.25 are the
universal critical exponents.
• In statistical mechanics we one aims to model such critical behaviour with

simple statistical models captering the degrees of freedom relevant for the
universal behaviour. The simplest such model is the Ising model where the
magnetic spins σx ∈ {+1,−1} where x ∈ Λa0 ⊂ (a0Z)n denotes a point in the
lattice.
• The relevant observable to compare with experiment is the correlation func-

tion

< σxσy >=
1

Z

∑
{σw}

σxσye
−βH[{σw},B](2)

where

Z =
∑
{σw}

e−βH[{σw},B](3)

is the partition sum, β = 1
kBT

is the inverse temperature (NOT TO BE

CONFUSED WITH THE CRITICAL EXPONENT) and

βH[{σw}, B] = −βJ
∑
|x−y|=1

σxσy + βB
∑
x

σx(4)

is the Ising Hamiltonian in the presence of an external magnetic field B.

4. Lecture on Oct. 25. – RG Flow

• In Kadanoff’s block spin method one replaces each individual spin σx by the
average

σX =
1

mL

∑
x∈X

σx , mL =
∑
x∈X

< σx >

over the block X of length La0 containing Ln spins. The model is said to be
renormaliseable if the description in terms of the lock spins is given in terms
of the same Hamiltonian, possibly with renormalised couplings

g(L) = UL(g, h) , h(L) = VL(g, h)

where g = βJ and h = βB.
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• This blocking is the repeated until one encounters a critical point (g∗, h∗)
(assuming it exists), where

g∗ = UL(g∗, h∗) , h∗ = VL(g∗, h∗)

This point should correspond to the critical temperature for the original ferro
magnet, characterised by the absence of any scale.
• Due to the absence of scale at the critical point it is legitimate to replace

the lattice model by a suitable continuum field theory (zero lattice constant),
still to be defined. Similarly, we can replace L by a continuous variable. The
logarithmic derivative

L
d

dL
g(L) =: u(g(L))

is then a function that depends only on g(L) (assuming h(L) = 0 for simplicity)
and that vanishes at g∗. At linear order

u(g(L)) = (g(L) − g∗)y , y =
∂u

∂g
|g=g∗

we find for the correlation length ξ with ξ(g(L)) = 1
L
ξ(g(L)) on dimensional

grounds, the critical behaviour

(5) ξ(g(L)) ∝ (g(L) − g∗)−
1
y ∝ t−

1
y

where t = T−Tc
Tc

is the reduced temperature.

5. Lecture on Oct. 30. – Continuum Description

• In order to compare the lattice model with the continuum field theory we
consider the scaling limit

< σxσy >
∗:= lim

λ→∞
λ(n−2+η) < σλxσλy >

which is insensitive to the details inside the blocks X.
• The simplest continuum theory is the Gaußian model with euclidean action

S[ϕ] =
1

2

∫ (
(∂ϕ)2 +m2ϕ2

)
dnx

and correlation function

C(x, y) :=< ϕ(x)ϕ(y) >∝ e−|m||x−y|

|x− y|n−2

that agrees with < σxσy >
∗ for m = 0 and η = 0. For m 6= 0 this model predicts

a susceptibility

χ ∝
∫
dnx C(x) ∝ m2.

• The only scale present is m2 which, following Landau’s description of phase
transitions, we identify with t. This then predicts the critical exponent γ = 1
which is still far from the experimental value. The reason for this is that in
Landau’s description the fluctuations are ignored.
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6. Lecture on Nov. 6. – Renormalisation

• Renormalisability and symmetry don’t allow for many more models except

S[ϕ] =
1

2

∫ (
(∂ϕ)2 +m2ϕ2 +

λ

4!
ϕ4

)
dnx

Since this model is non-linear the fluctuations renormalise both, λ and m. This
can be seen by calculation the loop-corrected 4-point vertex up to one loop
[ID],

Γ4 = λ− 3

2
λ2

∫
dnq

1

(q2 +m2)2
= λ− 3

2
λ2(m2)−

ε
2
A

ε
, ε = 4− n

where A = 2
Γ(3−n

2
)

(2
√
π)n

. To continue we write

λ = (λ(0) = gR(m2)
ε
2 ) + λ(1)

where uR is the dimensionless, renormalized coupling and λ is the bare
coupling. We then demand that Γ4 agrees with λ(0) and thus

λ =

(
gR +

3

2
g2
R

A

ε

)
(m2)

ε
2

or, equivalently,

gR =
λ

(m2)
ε
2

− 3

2

λ2

(m2)ε
A

ε

Since the bar coupling λ is independent of m we the the find

β(gR) = m2 d

dm2
gR = − ε

2

(
gR −

3

2
g2
R

A

ε

)
The critical point is then given by either gR = 0 (Gaußian model) or gR = 2ε

3A

(Wilson Fisher fixed point).
Similarly the mass is renormalised as seen be computing

m2
R = Γ2 = m2 + λ(m2)

n−2
2

Γ
(
n−2

2

)
(2
√
π)n

With the ansatz m2
R = (m2)1+c(λ) we find from the above

(6) c(λ) =
A

4
λ2(m2)−

ε
2 = g∗R

A

2
=
ε

6

For n = 3 (ε = 1) this gives the critical exponent γ ' 1.2 which is already close
to the measured value 1.25 .
• More generally, comparing (11) with (5) we find y ' 1− ε

12
in this model.

7. Lecture on Nov. 8. – Anomalous Dimensions and Primary Fields

• To summarize, taking into account fluctuations at first order in λ we found
an anomalous scaling of the correlation length near the Wilson-Fisher critical
point. At the critical point the 2-point correlation function scales as

C(x, y) =< ϕ(x)ϕ(y) >∝ 1

|x− y|n−2
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while for the for the lattice model one furthermore finds an anomalous di-
mension for ϕ,

C(x, y) ∝ 1

|x− y|2∆

with 2∆ = n − 2 + η. A non-vanishing value for η in the continuum theory
arises at second order in λ [ID].
• The Källen Lehman representation of the 2pt correlator

∆(p) =

∫
eipxC(x)dnx =

∫
eipx

1

|x|2∆
dnx =

(4π)n/2

42∆Γ(2∆)Γ(2∆− n
2

+ 1)

∞∫
0

µ2∆−n
2

µ+ p2
dµ

shows that at the interacting fixed point ( η 6= 0) the perturbative spectrum of
the theory contains a continuum of states with m2 = µ rather than a discrete
set of states.
• If

(7) < ϕ∆(x)ϕ∆(y) >∝ 1

|x− y|2∆

we say that ∆ is the weight of the field ϕ.
• A field ϕ is said to be a primary field of weight ∆ if ϕ transforms like a

tensor field under translations and rotations (or Lorentz transformations) and
furthermore

ϕ(x) = λ∆ϕ̃(x̃)

under dilataions, x̃ = λx. In particular, for ∆ = 0, ϕ is a scalar field (a
function).
• The notion of a primary field can be extended to the whole conformal group

(including special conformal transformations) by embedding the space F(Rn)
functions on Rn in the space F(Rn+2) functions on Rn+2 where conformal trans-
formations are represented linearly by an SO(n+ 1, 1) matrix Λ, followed by a
dilatation, D, to bring the point back to Rn (realised as a section on the light
cone). Concretely,

ϕ(xµ) ↪→ φ(XA)
Λ
= φ̃(X̃A)

D
= λ∆ ˜̃φ( ˜̃XA)

restr.to Rn→ λ∆ϕ̃(fµ(x))

where xµ 7→ fµ(x) is a conformal mapping.
• If the statistical measure (or vacuum state for Minkowski CFT, see next lecture)

is invariant under conformal transformations then we conclude that under the
conformal transformation x 7→ x̃ = f(x) the 2 pt correlator transforms like

< ϕ̃(x̃µ)ϕ̃(ỹµ) >= λ−2∆ < ϕ(xµ)ϕ(yµ) >

where λ = 1
n
fµ,µ in agreement with (7).

• By the above embedding and assuming conformal invariance one finds similarly

< φ∆1(XA)φ∆3(Y B)ϕ∆3(ZC) >=
c

(X · Y )a(X · Z)b(Y · Z)c

with a+ b = ∆1, etc. from scale invariance.
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8. Lecture on Nov. 13. – Scale vs. Confomal Invariance

• A local Poincaré invariant field theory has a symmetric, conserved stress tensor
Tµν . If the model is scale-invariant then

T µµ = ∂µV
µ

holds for some local field (operator) V µ.
• In Lorentzian signature Tµν gives rise to a family of Noether charges

Jµ =

∫
Σ

(
ξνTµν −

1

n
ξν,νVµ

)
dn−1x

where ξµ is the Killing field.
• In the canonical formulation the transformation of primary field correlators

is then given by

δξ < ϕ(xµ) · · ·ϕ(yµ) >=< [J0, ϕ(xµ) · · ·ϕ(yµ)] >

which vanishes if the vacuum is invariant.

9. Lecture on Nov. 15. – Special Conformal Transformations

• Note that the term in Jµ containing V µ implements the Weyl transformation
on the field ϕ while the term containing Tµν implements the diffeomorphism
part. For instance, for dilatations,

(8) δϕ∆(x) = −i(xµ∂µ −∆)ϕ∆(x)

• If ξµ parametrises a special conformal transformation the corresponding Noether
charge J0(ξ) is conserved if and only if there is a local field Lµν such that

V µ = ∂νL
µν

• For n = 2 scale invariance and unitarity implies the existence of Lµν while for
n > 2 the precise necessary conditions for this to hold are still not completely
settled.

10. Lecture on Nov. 20. – Radial Quantisation

• A quantum state in QFT amounts to specifying the wave function on a Cauchy
hypersurface, Σt. After a Wick rotation of time, t − iτ , we obtain a field
theory defined on Rn with Euclidean signature and hypersurfaces, Στ .
• Using invariance of a CFT under inversion Σ−∞ is mapped to the origin of Rn

while on Σ0 the inversion maps the origin in Σ0 to the point at infinity. Adding
this point we obtain the conformal compactification of Σ0 which through
stereographic projection is isomorphic to the unit sphere Sn−1.
• In a CFT it is convenient to replace the hypersurfaces Στ by concentric spheres
Sn−1
r of radius r related to Sn−1

r′ by a dilation. Thus the dilatation operator D
plays the role of the Hamiltonian in a CFT. Furthermore, instead of defining a
state ψ on Σt one defines an (abstract) state φ on Sn−1

r . This is usually referred
to radial quantisation.
• Since Sn−1

r can be shrunk to a point by a suitable dilation, one expects that
a state φ should correspond to the insertion of a suitable primary field (or
operator) at the origin of Rn. This is the state operator correspondence.
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• Operator state correspondence: Conversely, any primary field φ∆(x) inser-
ted at x = 0, defines an eigenstate of D. Indeed, from (8) we have

D|∆ >≡ [D,φ∆](0) = i∆|∆ >

• Furthermore, from Pµ ∼ −i∂µ we conclude that Pµ|∆ > has dimension ∆ + 1,

Pµ|∆ >= [Pµ, φ∆](0) = |∆ + 1 >

More generally,

|∆ >
Pµ→ |∆ + 1 >

Pµ→ |∆ + 2 > · · ·

generates a module of descendants for each primary state |∆ >. Similarly,
with

Kµ ∼ −i
(
−2xµ∆ + 2xµ(xα∂α)− x2∂µ

)
one finds the the sequence

0
Kµ← |∆ >

Kµ← |∆ + 1 >
Kµ← |∆ + 2 > · · ·

11. Lecture on Nov. 22. – Inner Product & Unitarity Bounds

• In a unitary CFT it is possible to define a non-degenerate positive definite in
product by glueing the ball bounded by the unit sphere Sn−1 with an operator
O (primary field or descendent) inserted at the origin with another ball with
operator O′ inserted along Sn−1. The result is the two point function

< ∆′|∆ > := lim
x→0

< (I∗O∆′)(x)O∆(x) >(9)

= δ∆′,∆ lim
x→0
|x|−2∆ < O∆′(I(x))O∆(x) >= const.δ∆′,∆

The const. can be set to one bey a suitable rescaling of O.
• The adjoint of Pµ w.r.t. to this inner product is easily found noting that

< ∆| = I(|∆ >)

Then,

P †µ = Kµ

Similarly, D† = −D.
• The unitarity bounds are consequences of these relations. In particular, if

we denote by |∆, ` > a highest weight in the spin ` representation of SO(n),
then the condition

0 < ||PµPν |∆ > ||2 =< ∆|KµKνPµPν |∆ >

implies,

∆(`) ≥ `+ n− 2 for ` > 0 and ∆ ≥ n

2
− 1 for ` = 0 .(10)

Furthermore holds iff O∆,`(x) satisfies a conservation equation, eg. �O∆(x) = 0
for ` = 0, ∂µ(O∆,1)µ(x) = 0 for ` = 1 etc.
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12. Lecture on Nov. 27. – Operator Product Expansion

• Inserting a primary field φ1 at the origin and another primary field φ2 at some
point x 6= 0 defines some state and thus, by the operator state correspondence
must be equivalent a linear combination of primaries and descendents inserted
at the origin. Furthermore, since in a Hilbert space Cauchy series converge,
this expansion is convergent. Thus we have the operator product expansion
(OPE)

φ∆1(x)φ∆2(0) =
∑

O,primary

C12
O (x, ∂y)O(y)|y=0

where C12
O (x, ∂y) with polynomial dependence on ∂y is a generating function

for the descendants.
• For ∆1 = ∆2 = ∆ one shows ([R, DO] and exercise sheet), upon acting with

the generators D and Kµ on this equation, that

(11) C12
O (x, ∂y) = λ12O

1

|x|2∆−∆O
CO(x, ∂y)

where, up to an overall normalisation, λ12O and CO(x, ∂y) are completely de-
termined by the 3-point functions

< φ∆(x1)φ∆(x2)O(x3) >=
λ12O

|x1 − x2|2∆−∆O |x1 − x3|∆O |x2 − x3|∆O

CO(x, ∂y) is of the form,

CO(x, ∂y)(1 + ck(x)k(∂)k)

where the ck are depend on ∆O only (see exercise).
• Partial wave expansion: We can substitute the OPE in the 4-pt function

twice to find

< φ∆(x1)φ∆(x2)φ∆(x3)φ∆(x4) >=∑
O,O′,primary

C∆∆
O (x1 − x2, ∂y)C

∆∆
O′ (x3 − x4, ∂y′) < O(y)O(y′) > |y=x2,y′=x4(12)

This is the conformal partial wave expansion of conformal correlation func-
tions.

13. Lecture on Nov. 29. – Conformal Bootstrap

• So far this procedure leads to a definite result for N-pt functions for any set of
{∆i, λijk}. However, there constraints implied by the requirement that replacing
the (1 − 2), (3 − 4) OPE by (1 − 4), (3 − 2) leads to the same 4-pt function
(crossing symmetry).
• Crossing symmetry: While 2- and 3-pt functions are completely determi-

ned by conformal symmetry this is not so for the 4-pt function. The general
conformally invariant expression for the 4-pt function takes the from

< φ∆(x1)φ∆(x2)φ∆(x3)φ∆(x4) >=
f(u, v)

|x12|2∆|x34|2∆

where

u =
x2

12x
2
34

x2
13x

2
24

, u =
x2

14x
2
23

x2
13x

2
24
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are the invariant conformal cross ratios. Crossing symmetry requires inva-
riance under x1 ↔ x2 or, equivalently,(v

u

)∆

f(u, v) = f(v, u)

• On the other hand, using (11) and (12) we can write the 4-pt functions as

< φ∆(x1)φ∆(x2)φ∆(x3)φ∆(x4) >=
∑

O,primary

λ2
∆∆OGO(u, v)

where the conformal block GO(u, v) accounts for the contribution of O and
its descendants to the 4-pt function. The crossing symmetry condition can then
equivalently be written as∑

O,primary

λ2
∆∆O

(
v∆GO(u, v)− u∆GO(v, u)

)
= 0

• Def: CFT: A CFT is a set of data {∆i, λijk} such that crossing symmetry
holds for the 4-pt function.
• The goal of the conformal bootstrap is to find {∆i, λijk} such that this

equation is satifield.
• Rem: Crossing symmetry is equivalent to demanding the the OPE is associa-

tive. Once the constraints are satisfied for the 4-pt function it is not hard to
see that no further constraints are imposed by higher -pt functions.
• AdS/CFT correspondence: The isometry group of (Euclidean) AdSn+1 is
SO(n + 1, 1). The Poincaré patch of AdSn+1 is parametrised by the coordi-
nates (z, x ∈ Rn) with metric

ds2 =
dz2 + dx2

z2

On the conformal boundary of (z → 0) of the Poincaré patch the SO(n+ 1, 1)
generators reduce the conformal Killing fields on Rn (see exercise).
• Any correlation function of an (not necessarily conformally invariant) AdS-

invariant field theory, evaluated on the conformal boundary, is the consistent
with conformal symmetry on Rn. Then, furthermore summing over s, t and u-
channels to enforce crossing symmetry this produces solutions to the conformal
bootstrap equations. This the AdS/CFT correspondence.

14. Lecture on Dec. 4. – CFT in 2 Dimensions

• Rep: in 2 dimensions any holomorphic function f(z) solves the conformal Killing
equation. A basis for infinitesimal conformal transformations (Killing field) is
the given by {ln = ξzn∂z = zn+1∂z} with [ln, lm] = (n − m)ln+m. This is the
deWit algebra. The representation Ln of ln in field theory is given in terms
of the moments

Ln = T (ξn) =
1

2πi

∮
dz ξzn Tzz =

1

2πi

∮
dz zn+1 Tzz

and similarly for L̄n. The hermitian conjugate (exercise) of Ln is given by

L†n = Ln

From

δξφ∆(w) = [T (ξ), φ∆(w)]
rad. quant.

=
1

2πi

∮
dz ξz Tzzφ∆(w)



11

for primary fields φ∆ = φhh̄ we then infer the OPE T (z) ≡ Tzz

(13) T (z)φ∆(w) =
h

(z − w)2
φ∆(w) +

1

(z − w)
∂wφ∆(w) + regular terms

The OPE of T (z) with itself on the other hand, should be given by (on dimen-
sional grounds)

T (z)T (w) =
cI

2(z − w)4
T (w) +

2

(z − w)2
T (w) +

1

(z − w)
∂wT (w) + reg.

with c > 0 for a unitary theory (positive definite inner product). This, then
leads to

[Ln, Lm] = (n−m)Ln+m +
cI
12

(n3 − n)δn+m,0

The term proportional to I is a central extension since it commutes all other
generators.
• The centrally extended deWit algebra is the Virasoro algebra.
• As a consequence of the central term in the OPE of T (z) with itself T does

not transform as tensor conformal transformations. Rather we have under z →
z + εξ(z),

δεT (z) = εξz∂zT (z)− 2ε(∂zξ
z)T (z) +

c

12
ε(∂3

zξ
z) +O(ε2)

or, for a finite transformation, z̃ = f(z),

T (z) =
1

(∂zf(z))2
T̃ (f(z)) +

c

12
{f, z}

where

{f, z} =
∂3
zf

∂zf
− 3

2

(
∂2
zf

∂zf

)2

is the Schwarzian derivative.

15. Lecture on Dec. 6. – Highest Weight Representations

• For φ∆ = I, which corresponds to the vacuum |0 > through the operator state
correspondence we have T (z)φ∆ = T (z). Integration against dz zn+1 the gives

Ln|0 >= 0 , n ≥ −1

and similarly for L̄n. Then, since {L1, L0, L−1} forms a closed subalgebra (iso-
morphic to sl(2,R) ), the vacuum state is invariant under sL(2,C) = sl(2,R)×
sl(2,R).
• More generally, for a primary field φ∆ and its corresponding state |∆ > it

follows from (13) that

Ln|∆ >= 0 , n ≥ 1 and L0|∆ >= h|∆ >

Thus, primary field generate highest weight states |∆ > with weight h (and
h̄) and Ln|∆ > is a desendent of |∆ >.
• An import result that follows form positivity of the inner product is that in

a unitary CFT any state |ψ > is a liner combination of highest weight states
and their descendants. As a consequence the Hilbert space H of a CFT has an
orthogonal decomposition of the form

H = ⊕h,h̄Vh ⊗ Vh̄
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where Vh consists of a highest weight state |∆ > and its descendants. Vh is a
Verma module.
• In a unitary representation of the Virasoro algebra (CFT) it holds that h, h̄ ≥ 0.
• In a unitary representation of the Virasoro algebra (CFT) it holds that c > 0.
• Virasoro characters: The character of a Verma module is defined as

χ(c, h) = TrVc,h(qL0− c
12 ) , q = e2πiτ

with Im(τ) > 0.

16. Lecture on Dec. 13. – Unitarity [F, QJ]

• In contrast to higher dimensional CFT’s the dimension of the subspaces in a
Verma module creases with the level (that is the subspaces of descendants of
fixed conformal weight) and we cannot exclude that certain linear combinations
of descendants of fixed conformal weight have negative norm. In order to analyse

this issue we consider the hermitian matrices, M
(k)
ij =< i|j >, of inner products

at fixed level k. Unitarity then requires that M
(k)
ij is positive definite and, in

particular, det(M (k)) > 0.
• If det(M (k)) = 0 for some k, then Vh contains a null state (i.e. orthogonal to

all states including itself) which can be identified with zero and which removes
it form Vh. If det(M (k)) < 0 then the module contains a negative norm state
which cannot be removed.
• For c ≥ 1 there are no states of negative norm.
• Forthermore, it can be shown that except for a discrete set of central charges

and conformal weight {hrs(c)} all Verma modules contain negative norm states
at some level. The models with no negative norm states are given by

c = 1− 6

m(m+ 1)
, m = 2, 3, · · ·(14)

hrs =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)

=
1

24
(c− 1) +

1

4

(
r

√
1− c+

√
25− c√

24
+ s

√
1− c−

√
25− c√

24

)
=: h0 +

1

4
(rα+ + sα−) , 1 ≤ r < m , 1 ≤ s ≤ r

17. Lecture on Dec. 18. – BPZ Equations [F]

• The Verma modules Vh12 and Vh21 contain a null state |χ >= (L−2+ηL2
−2)|h >

for η = − 3
2(2h+1)

. This implies, in turn that

0 =

{
P∑
i=1

1

z − wi
∂wi +

hi
(z − wi)

2

+ η∂2
z

}
< φh(z)ψ1(w1) · · ·ψP (wP ) >

where φh(z) is the primary field corresponding to |h >.
• Applying this to the 3-point function

< φh(z)φh1(w1)φh2(w2) >=
λh12

(z − w1)h+h1−h2(z − w2)h+h2−h1(w1 − w2)h1+h2−h
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one finds that λh12 can be non-zero only if

h2 = h0 +
1

4
α2

2

where

α2 = α1 ±

{
α+ h = h21

α− h = h12

(15)

and α1 is defined through h1 = h0 + 1
4
α2

1. These selection rules thus are a
consequence of the presence of a null state.
• In terms of the OPE this means that

φh21 × ψ(α) ∼ ψ(α+α+) + ψ(α−α+)

φh12 × ψ(α) ∼ ψ(α+α−) + ψ(α−α−)(16)

18. Lecture on Dec. 20. – Ladder Operators [F]

• For ψ(α) = φrs we then have the Fusion Rules

φ21 × φrs ∼ φr+1,s + φr−1,s

φ12 × φrs ∼ φr,s+1 + φr,s−1(17)

which shows that φ21 and φ12 act as ladder operators for r and s respectively.
Generically fusion generates an infinite family of Verma modules.
• However, if there exist p, p′ ∈ Z such that pα−+ p′α+ = 0 (=rational CFT’s)

then there is some redundancy in the rs parametrisation. In particular,
1. hr,s = hr+p′,s+p
2. hr,s = hp′−r,p−s
3. hr,s + rs = hp′+r,p−s = hp′−r,p+s
4. etc.

Consequently, there are infinitely many sub modules (null vectors) in each
Verma module Vhrs which, in turn, imply infinitely many BPZ equations and
thus infinitely many constraints on the OPE coefficients.
• Rational minimal models are conveniently parametrised by

c = 1 =
6(p− p′)2

pp′
, hrs =

(pr − p′s)2 − (p− p′)2

4pp′

with p = p′ + 1.

19. Lecture on Jan. 8. – Ising model[F]

• For p′ = 1, c = −2 the minimal model is not unitary since c < 0.
• For p′ = 2, c = 0 all highest weight states have zero norm.
• For p′ = 3, c = 1

2
an independent set of highest weighs states is given by

I := φ(1,1) ; h = 0

σ := φ(1,2) ; h =
1

16

ε := φ(1,2) ; h =
1

2
(18)
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with OPE

σ × σ ∼ I + ε

σ × ε ∼ σ

ε× ε ∼ I(19)

• ε can be identified with a free Majorana-Weyl fermion ψ in 2 dimensions while
σ can be only expressed non-locally in terms of ψ through bosonisation.
• Since ψ(z) × (0) ∼ 1

z
the modes {ψn} of ψ form a centrally extended com-

mutative symmetry analogous to the Virasoro algebra represented on σ/ This
explains the structure of the OPE algebra (19).
• The fields σ and ε can be identified with the order parameter (magnetisation)

and energy density of the continuum limit of the Ising model at the critical
point.

20. Lecture on Jan. 10. – Ising model, Potts model[F]

• The minimal model with p′ = 4, c = 7
10

primary fields

I := φ(1,1) ; h = 0

ε := φ(1,2) ; h =
1

10

ε′ := φ(1,3) ; h =
3

5

ε′′ := φ(1,4) ; h =
3

2

σ := φ(2,2) ; h =
3

80

σ′ := φ(2,4) ; h =
7

16
(20)

describes the tri-critical point of the dilute Ising model.
• The OPE algebra

ε× ε ∼ I + ε′

ε× ε′ ∼ ε+ ε′′

ε× ε′′ ∼ ε′

ε′ × ε′ ∼ I + ε′

ε′ × ε′′ ∼ ε

ε′′ × ε′′ ∼ I
ε× σ ∼ σ + σ′

ε× σ′ ∼ σ

ε′ × σ ∼ σ + σ′

ε′ × σ′ ∼ σ

ε′′ × σ ∼ σ

ε′′ × σ′ ∼ σ′

σ × σ ∼ I + ε+ ε′ + ε′′

σ × σ′ ∼ ε+ ε′

σ′ × σ′ ∼ I + ε′′(21)
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again reveals the presence of an extra symmetry algebra generated by ε′′ with
Virasoro conformal weight 3

2
. [I, ε′′] and [ε, ε′] transform as doublets under ε′′

while σ and σ′ transform as singlets.
• This is compatible with the superconformal algebra

[Ln, Lm] = (n−m)Ln+m +
cI
12

(n3 − n)δn+m,0

{Gn, Gm} = 2Ln+m +
cI
3

(n2 − 1

4
)δn+m,0

[Ln, Gm] = (
n

2
−m)Gn+m(22)

and indeed the c = 7
10

is the only model which is minimal w.r.t. to both, the
Virasoro- and the superconformal algebra.
• The minimal model with p′ = 5, c = 4

5
has a closed subset of primary fields

I := φ(1,1) ; h = 0

ε := φ(2,1) ; h =
2

3

X := φ(3,1) ; h =
7

5
Y := φ(4,1) ; h = 3

σ := φ(3,3) ; h =
1

15

σ′ := φ(4,3) ; h =
2

3

whose OPE algebra includes Y × Y ∼ I. The presence of a dimension 3 (or
more generally half integer weight) with this OPE signals the presence of an
extra symmetry for which this field is the conserved current. This is the W3

algebra (see [BS]) for a review) which contains the Virasoro algebra just like the
superconformal algebra contains the Virasoro algebra for p′ = 4. The 3-state
potts model is the only model which is at the same time a Virasoro minimal
model and a W3 minimal model.

21. Lecture on Jan. 15. – Landau Ginzburg description[F]

• It turns out that the diagonal (p, p′) minimal models have a Lagrangian des-
cription as the critical point (RG-fixed point) of a Landau Ginzburg effective
model with Lagrangian

S[Φ] =

∫
d2x

(
(∂Φ)2+ : Φ2(p′−1) :

)
where Φ = φ(2,2). The normal ordering is defined by subtracting the most
singular term in the OPE, eg.

Φ2 ≡: Φ2 := lim
|z|→0

[
(|z|2)2hΦ−hΦ2 Φ(z, z̄)Φ(0, 0)− I

(|z|2)2hΦ

]
and similarly, by recursion for the higher order terms. This series of composite
operators stops at : Φ2m−3 := ∂2Φ by the equation of motion. In this way
the Landau Ginzburg at the RG-fixed point reproduces all primary fields as
composites : Φk :, k = 1, · · · 2p′ − 4.
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22. Lecture on Jan. 17. – Boundary Conformal Field Theory [F]

• We will consider a conformal field theory on the upper half plane, H. Then,
since the conformal Killing fields, ξ = ξz∂z+ ξ̄z̄∂z̄ should preserve the boundary,
ie. the real line R, we have ξz(x) = ξ̄z̄(x) for x ∈ R and thus, by analyticity,
ξ̄z̄(z̄) = ξz(z∗), where z∗ is the reflection of z∗ on the real line.
• This is consistent with the boundary condition Tzz|R = T̄z̄z̄|R which, when

translated into Tτσ and after Wick-rotation into Ttσ expresses the fact that no
momentum flows accross the boundary. We will assume this boundary
condition in what follows.
• For primary fields the OPE necessarily contains Tzz (or T̄z̄z̄). Thus, since Tzz|R =
T̄z̄z̄|R we infer from (x ∈ R)

φh(x)× φh(0) ∼ Tzz = T̄z̄z̄ ∼ φ̄h(x)× φ̄h(0)

that φh(x) = ±φ̄h(x) and thus by analyticity1

φ̄h(z̄) = ±φh(z∗) .
• Conformal Ward Identity: For

X := φh1(z1)φ̄h̄1
(z̄1) · · ·φhn(zn)φ̄h̄n(z̄n) = ±φh1(z1)φh̄1

(z∗1) · · ·φhn(zn)φh̄n(z∗n)

the conformal Ward Identity on H can be reformulated as

δξξ̄〈X〉 =
1

2πi

∮
C

dz ξ(z)〈T (z)X〉 − 1

2πi

∮
C

dz̄ ξ̄(z̄)〈T̄ (z̄)X〉

=
1

2πi

∮
C

dz ξ(z)〈T (z)X〉+
1

2πi

∮
C∗
dz̄ ξ̄(z̄)〈T̄ (z̄)X〉

= ± 1

2πi

∮
C∪C∗

dz ξ(z)〈T (z)φh1(z1)φh̄1
(z∗1) · · ·φhn(zn)φh̄n(z∗n)〉(23)

which is a contour integral of a single holomorphic field on the full complex
plane, C.
• one point functions: The one point correlator on a CFT on H is given by

〈Φhh̄(z, z̄)〉H = ±〈φh(z)φ̄h̄(z
∗)〉C =

c δhh̄
z − z∗

where c depends on the boundary condition.

23. Lecture on Jan. 22. – Boundary Operators [F]

• Boundary primary fields that are compatible with given boundary conditions
ca be obtained by pulling bulk fields to the boundary. Using mirror fields we
have

lim
z→R

φhh̄(zz̄) = lim
zøz∗

φh(z)φh̄(z̄) =
∑
i

1

(z − z∗)h+h̄−hi
φhi(x)

where x ∈ R and φhi(x) are boundary fields. For example for the Ising model
we have

σ(z)σ(z∗) ∼ aI + bε(x) , ε(z)ε(z∗) ∼ cI(24)

where a, c 6= 0, and b 6= 0 for free boundary conditions.

1for multicomponent fields, more general boundary conditions are possible, see e.g. [RS].
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• In addition there are boundary operators that cannot be obtained from bulk
fields. These do change the boundary conditions. If φab(x) is such a boundary
operator it will change the boundary condition (a) to boundary condition (b)
at the point x.
• In order to see which boundary operators can arise as a representation of the

‘Virasoro algebra on computes the (finite temperature) partition function on
the strip with boundary conditions (a) and (b) on each end:

Zab = TrHab

(
e−

βπ
L

(L0− c
24

)
)

=
∑
i

niabχi(q)

where χi(q) is the character of the Verma module Vi for q = e−
βπ
L (see lecture

15) and niab is the number of times Vi appears.
• equivalently, this partition sum can be interpreted as the bulk CFT transition

amplitude between boundary states |a > and |b >,

Zab =< a|e−
2πL
β

(L0+L̄0− c
12

)|b >(25)

• A basis for the consistent boundary states is given by the Ishibashi states

|Bhi >>=
∑
N

|hi, N > ⊗|hi, N >

where N labels the descendents.

24. Lecture on Jan. 24. – Cardy Conditions and Verlinde Formula [F]

• From our earlier definition of the characters of Verma modules it the follows
that

Zab =
∑
j

<< hj|a >< b|hj >> χj(e
− 4πL

β )(26)

• On the other hand, modular invariance implies

χi(e
−πβ
L ) =

∑
j

Sijχj(e
− 4πL

β )(27)

where Sij is symmetric and orthogonal.
• Equivalence of (25) and (26) then implies the Cardy Conditions

<< hj|a >< b|hj >>=
∑
i

niabSij , niab =
∑
j

Sij << hj|a >< b|hj >>(28)

where niab are integers.
• In order to solve these equations we make the following Ansatz for the boundary

states |l̃ >

|l̃ >=
∑
j

Slj√
S0j

|hj >>(29)

That this Ansatz is consitent follows form Verlinde’s Fusion Rules which
state that consistency on a torus (modular invariance) implies implies that

SkjSlj
S0j

=
∑
i

N i
klSij(30)

holds for any CFT with N i
kl natural numbers.
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• Ising Model: From the bulk theory we infer the matrix

Sij =


1
2

1
2

√
1
2

1
2

1
2

−
√

1
2√

1
2
−
√

1
2

0


Thus the consitent boundary states are given by

|0̃ > =

√
1

2
|0̃ >> +

√
1

2
|ε̃ >> +

1

21/4
|ε̃ >>

|ε̃ > =

√
1

2
|0̃ >> +

√
1

2
|ε̃ >> − 1

21/4
|ε̃ >>

|σ̃ > = |0̃ >> −|ε̃ >>

They correspond to the boundary condition +,− and free respectively.

25. Lecture on Jan. 29. – Perturbed Boundary Conformal Field Theory
[RS]

• The idea is to deform the boundary condition by exponentiate a boundary field
ψ as

< · · · >λψ = < · · · eλ
∫
R ψ(x)dx >(31)

= < · · · (1 + λ

∫
R
ψ(x)dx+

λ2

2

∫
R

∫
R
ψ(x1)ψ(x2)dx1dx2 + · · · ) >

• In what follows we will only consider deformations by marginal boundary
operators, that is, operators of conformal weight one, for which the coupling
λ is dimensionless.
• Ordering: The definition of the exponential in (31) display an ordering pro-

blem for double (and higher) integrals since ψi(x1)ψj(x2) 6= ψj(x2)ψi(x1) in
general.
• Def: ψi(x1) and ψj(x2) are said to be mutually local if ψi(x1)ψj(x2) =
ψj(x2)ψi(x1) and ψi(x) is said to be self local if ψi(x) is local w.r.t. itself.
• Remark: Locallity implies that the OPE ψi(x1)ψj(x2) has a well defined ana-

lytic continuation from R into C. In particular, for a conformal weight one,
self-local boundary field ψ we have

ψ(z)ψ(0) =
1

z2
+ regular

26. Lecture on Jan. 31. – Exactly Marginal Deformations [RS]

• If the perturbing field ψ(x) is not self-local then the regularised integral∫
R

∫
R
ψ(x1)ψ(x2)dx1dx2

in (31) will be (logartihmically) scale dependent which induces a non-vanishing
beta function for λ and thus the perturbed CFT fails to be conformal on the
boundary (although it still is in the bulk).
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• If the perturbing field ψ(x) is self local, then βλ = 0 at this order. Furthermo-
re, self-locality implies that the 3-point function 〈ψ(x1)ψ(x2)ψ(x3)〉 vanishes,
which, in turn, implies that βλ = 0 at all orders since higher point functions
factorize into 2- and 3-point functions. Consequently, if ψ(x) is self-local, then
the deformation induced by ψ is exactly marginal.
• Remark: Self-locality, exact marginality and vanishing of the 3-point function
〈ψ(x1)ψ(x2)ψ(x3)〉 are synonomous.
• For self-local perturbations the OPE ψi(x1)j(x2) has a well defines analytic con-

tinuation into the complex plane. Therefore we can regularise the perturbation
integrals by replacing∫

R
· · ·
∫
R
ψ(x1) · · ·ψ(xn)dx1 · · · dxn

by ∫
γ1

· · ·
∫
γn

ψ(z1) · · ·ψ(zn)dz1 · · · dzn

where γi is a curve in the upper half pane with imaginary part Imγi = iε.
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