Fakultät für Physik
print

Sprachumschaltung

Navigationspfad


Inhaltsbereich

Biophysics of the Cell – Tutorial

 For further questions about talks, dates and lecture contents, please contact the supervisor of the tutorial:

Janina Lange janina.lange@physik.lmu.de

Tutorial schedule

 Lipid membranes

23. Oct.: No tutorial, continuation of lecture

30. Oct.: No tutorial, discussion with guest lecture

6. Nov.: Tutorial for Lipid membranes (tutorial1)(solutions_ex1+2)(solutions ex3+4)

13. Nov.: No tutorial, continuation of lecture

Photosynthesis

20. Nov.: Tutorial for Photosynthesis (tutorial2)(solutions)

27. Nov.: No tutorial, continuation of lecture

Nerve cells

4. Dec: Tutorial for Nerve cells (tutorial3_1)(tutorial3_2)(solutions)

11. Dec.: No tutorial, continuation of lecture

Cell migration

18. Dec.: Tutorial for Cell migration (tutorial4_1)(solutions4_1)

8. Jan.: Block seminar: student presentations (no lecture)

15. Jan.: Block seminar: student presentations (no lecture)

22. Jan.: Tutorial for Cell migration II  (tutorial5)(solutions5)

29. Jan.: EXAM

5. Feb.: No tutorial, continuation of lecture

Talk list

The links to publications below each topic give an example of a paper that can be used to provide information, graphs or images about the topic. However, the students will be asked to do their own research on background knowledge, and not solely depend on this publication. Your talk should roughly consist of 66% technical background, and 33% applications of the technique.

Each seminar talk is supposed to be 15min long, followed by a 5min discussion with the group.

All seminar talks have to be given in English.

Each one of you has the possibility to show me or a colleague your slides in December (on Mondays before the lecture, so on 4th, 11th or 18th Dec.). You can ask open questions for roughly 10min. For this appointment, please send me an email to fix a date. For the appointments, meet me in the living room of Lehrstuhl Rädler, 1st floor, room NZ033.

Here is the final talk schedule (2018/01/08): please check if you are part of it and send me a note if we haven't included you yet.

2018/01/16: If you want to know your grades, please send me (Janina) an email and explicitely ask for them!

Block I:

Lipid membranes: 

1) Superresolution microscopy applied to lipid membranes: imaging lipid rafts

M. Bosic

http://spie.org/newsroom/6336-multispecies-imaging-and-diffusion-studies-using-super-resolution-microscopy?ArticleID=x117586&SSO=1

2) Small angle X-ray scattering: the structure of lipid double layers

S. Stubhan

http://www.sciencedirect.com/science/article/pii/S0006349509060913

3) Cryo-TEM: nobel prize 2017 and its application to biological membrane

F. Neukirchinger

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/advanced-chemistryprize2017.pdf

4) Dynamic Light Scattering: Artificial cells

T. Burkart

http://onlinelibrary.wiley.com/doi/10.1002/cbic.200800810/full

5) Micropipette aspiration: tether formation of cell membranes

M. Moussine

http://www.sciencedirect.com/science/article/pii/S0962892415001713

http://www.pnas.org/content/108/31/12605.full.pdf

6) Gene delivery: lipid-DNA carrier complexes

H. Intat

http://science.sciencemag.org/content/275/5301/810

http://science.sciencemag.org/content/281/5373/78


Photosynthesis:

7) Ultra short time spectroscopy: electron transfer during photosynthesis

M. Weingart

http://www.sciencedirect.com/science/article/pii/0009261485803936

8) Förster-Resonance Energy Transfer (FRET): a molecular ruler

M. Eder

http://www.pnas.org/content/101/24/8936.short

9) Dye-sensitized photovoltaic cell

A. Duque

http://ronney.usc.edu/AME514/Lecture14/Papers/OReganGratzel-Nature1991.pdf

Block II: Nerve cells 

10) Patch-Clamp: its historical role in neuroscience

K. v. Grafenstein

http://www.sciencedirect.com/science/article/pii/S0006349502756464

https://pdfs.semanticscholar.org/58e7/4081e1b57eccfe5b75c7bf7c0688f0aad01b.pdf

11) Chip-based patch-clamp technologies: high throughput drug screening

A. Garvert

http://www.brain.mpg.de/fileadmin/user_upload/images/Research/Letzkus/Davie_et_al_06.pdf

12) Atomic force spectroscopy: measuring the mechanical properties of axonal cones

P. Meyer

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531257/
http://www.pnas.org/content/108/33/13420.full.pdf

13) Magnetic resonance imaging: detecting multiple sklerosis

T. Wiltgen

http://www.neurology.org/content/56/3/304.full.pdf+html

14) Imaging with carbon nanotubes through-skull

P. Konrad

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026222/

Cell migration and mechanics 

15) Particle Image Velocimetry (PIV): investigation of collective cell migration

J. Schauer

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.104.168104

16) Thermal noise imaging: geometry of collagen networks

F. Galobardes

https://www.nature.com/articles/ncomms12729

17) 2D traction force microscopy on the single cell level

-tba

https://ac.els-cdn.com/S0006349501761450/1-s2.0-S0006349501761450-main.pdf?_tid=2df13eb4-a2a3-11e7-ab3c-00000aacb35e&acdnat=1506420919_5cea11571f1ab0e54d39369a3dd8405f

18) Traction force microscopy in 3D: cell migration in 3D networks

Hang Li

http://lpmt.biomed.uni-erlangen.de/mediafiles/Publications/Steinwachs_Nat_Meth_2016.pdf

19) Magnetic tweezers: measurements of cell plasticity

-tba

http://lpmt.biomed.uni-erlangen.de/mediafiles/Publications/Bonakdar%20Nat%20Mat%202016%20cell%20plasticity.pdf

20) Pillar assay: measurements of cardiac contractility

M. Jung

http://online.liebertpub.com/doi/pdf/10.1089/ten.tea.2011.0341

21) Cell stretcher: cell orientation along strain and stress gradients

-tba

http://www.sciencedirect.com/science/article/pii/S0006349508784893

22) Optical stretcher: contact-free measurements of cell mechanical properties

J. Bauer

http://www.sciencedirect.com/science/article/pii/S0006349501757402

23) Real-time deformability cytometry: whole-blood sorting through cell mechanical properties

M. Weck

http://www.nature.com/nmeth/journal/v12/n3/full/nmeth.3281.html?foxtrotcallback=true